AN ANION-PROMOTED REARRANGEMENT OF 2-(o- AND p-NITROBENZYLOXY) TROPONES TO α -HYDROXYLATED 2-(o- AND p-NITROBENZYL) TROPONES. A READY INTRODUCTION OF ARALKYL GROUP INTO THE TROPONOID NUCLEUS

Hitoshi TAKESHITA,* Akira MORI, and Hiroshi SUIZU
Research Institute of Industrial Science, 86, Kyushu University,
Kasuga-koen, Kasuga, Fukuoka 816

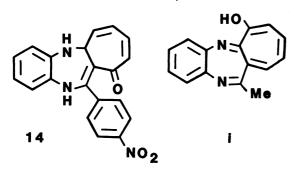
During the preparation of 2-(o- and p-nitrobenzyloxy)tropones from o- and p-nitrobenzyl chlorides and potassium tropolonate, a concomittant formation of α -hydroxylated 2-(o- and p-nitrobenzyl)tropones and 3-(o- and p-nitrobenzyl)tropolones was recognized. This alkali-promoted reaction has no precedent analogy in the troponoid chemistry. From the 2-(p-nitrobenzoyl)tropone, a tetrahydrobenzodiazaheptalenone, 6-(p-nitrophenyl)-5,7,11a,12-tetrahydrocyclohepta[b](1,5)benzodiazepin-7-one, was prepared.

Previously, we reported a thermally-induced radical reaction of 2-(arylmethoxy)tropone to the 3- and 5-(arylmethy1)tropolones. 1) The mechanism of the rearrangement was clarified by the kinetic analysis and isotope-labelling experiments. Similar rearrangements also occurred when 2-(hetarylmethoxy)tropones were heated in decalin; 2-(2-furylmethoxy)tropone to 3- and 5-(2-furylmethy1)tropolones and 3- and 5-(5-methy1-2-fury1)tropolones, 2) and 2-(2-thienylmethoxy)tropones to 3- and 5-(2-thienylmethy1)tropolones. 3) During the preparation of 2-(nitrobenzyloxy)tropones by the thermal reaction, we found an unprecedent rearrangement in the troponoid chemistry to form a C-C bond. We will herein describe an anion-promoted, novel reaction of 2-(nitrobenzyloxy)tropones.

When a hexamethylphosporic triamide (HMPA) solution of potassium tropolonate ($\bf 1$) 4) and p-nitrobenzyl chloride ($\bf 2$) was stirred at room temperature for 5 h, three isomeric products ($\bf 3$, $\bf 4$, and $\bf 5$) were isolated by silica-gel column chromatography in 68%, 1%, and 8% yields, respectively. On the other way, when an HMPA solution of $\bf 1$ was added dropwise to a solution of $\bf 2$, the product was predominantly $\bf 3$ with very small amount of $\bf 4$ and $\bf 5$. The structures of $\bf 3$ (colorless plates, mp 164-166 $^{\rm O}$ C) and $\bf 4$ (yellow crystals, mp 167-169 $^{\rm O}$ C) were identified to be 2-(p-nitrobenzyloxy)tropone and 3-(p-nitrobenzyl)tropolone, a formal rearrangement product of $\bf 3$: The NMR of $\bf 3$ revealed a methylene signal at lower field, $\bf 6$ =5.24, and nine aromatic protons, while the $^{\rm 1}$ H NMR spectrum of $\bf 4$ showed a methylene signal at higher field, 4.21, and eight aromatic protons. The $^{\rm 13}$ C NMR chemical shifts for the methylene carbons of $\bf 3$ and $\bf 4$ supported this conclusion.

The third product, **5** (yellow crystals, mp 170-172 $^{\circ}$ C), has secondary hydroxyl group [ν : 3230 cm $^{-1}$] and a tropone ring system [λ_{max}^{MeOH} : 275 nm (ϵ =14000)

and 315 (10500)]. In the ^1H NMR, a singlet signal ascribable to the newly-formed methine proton appeared. As expected, its ^{13}C NMR spectrum revealed, except for an sp 3 -carbon, a reasonable similarity to that of 2-(p-nitrobenzyl)tropone (6) which could be prepared, together with 4-(p-nitrobenzyl)tropone (7), by thermolysing 2-(p-nitrobenzylsulfonyl)tropone (8). In addition, the benzoyl derivative (9), a manganese(IV) oxide oxidation product of 5 , showed no singlet proton signal in the low field, where 6 -proton of the benzoyl group should appear. All these data have shown 5 to be the 6 -hydroxylated derivative of 6 , 2-[hydroxy(p-nitrophenyl)methyl]tropone.


When **3** was kept at room temperature in HMPA, no reaction occurred after 5 h, but when **3** was refluxed in 1,2-dichlorobenzene, **4** was formed in good yield. Furthermore, when **3** was added into an HMPA solution of sodium hydride, the mixture instantly caused a change in color to yield **5** in 72%, but none of **4**. Clearly, the formation of **5** was facilitated by a base, and **3** might not be the precursor of **4** already formed during the preparation. Thus, **4** should be formed by direct C-attack. On the other hand, from the mesomeric effect of the nitro group, an anion can be generated on the benzylic carbon (**A**), which could be transformed into the epoxide (**B**) by an assistance of potassium ion. The following C-O bond cleavage

This alkali-promoted reaction was also applicable to the ortho-isomer of $\bf 3$: By the reaction of $\bf 1$ with o-nitrobenzyl chloride ($\bf 10$) in HMPA, 2-(o-nitrobenzyl-oxy)tropone ($\bf 11$, yellow needles, mp 151-153 $^{\rm O}$ C) was obtained in 88% yield together with and 2-[hydroxy(o-nitrophenyl)methyl]tropone ($\bf 12$, brown crystals, mp 165-167 $^{\rm O}$ C). An alkali treatment of $\bf 11$ with sodium hydride in HMPA afforded $\bf 12$ in 66% yield. An oxidation of $\bf 12$ yielded 2-(o-nitrobenzoyl)tropone ($\bf 13$, yellow crystals, mp 131-133 $^{\rm O}$ C).

The rearrangement must also be applicable to other species which can produce a carboanion on that position. It may be even likely that the heteroatom linked to the tropone ring needs not to be oxygen; e.g., sulfur or nitrogen derivatives

may work as well. In general, Grignard reaction with various tropones has been used for preparation of 2-substituted tropones, 10) but it is true that the yields of the desired products were not sufficiently good due to the accompanied formation of ring-contracted phenyl derivatives; e.g., phenylmagnesium bromide and 2-methoxytropone gave triphenylmethanol. 11) It has been a common knowledge that 2-alkoxytropones are unstable under basic conditions to cause a ring-contraction to benzenoids. However, in a bulky aprotic polar solvent such as HMPA, tropones showed no tendency of the ring-contraction. This characteristic property of troponoids 12) will make various reinvestigations promising.

Finally, as a preliminary experiment to synthesize a diazaheptalene or 1,2-diazazulene derivative, a condensation of 9 with 1,2-diaminobenzene or hydrazine

hydrate was carried out. The former gave red crystalline compound ($\bf 14$) [$\lambda_{\rm max}^{\rm MeOH}$: 220 nm (ϵ =37600), 269 (20600), 324 (8900), and 417 (11000)] in 96% yield. However, its structure was not the desired 6-(p-nitrophenyl)cyclohepta[b](1,5)-benzodiazepine but 6-(p-nitrophenyl)-5,7,11a,12-tetrahydrocyclohepta[b](1,5)-benzodiazepin-7-one. 13) Furthermore, the

latter formed none of desired 3-(p-nitrophenyl)-1,2-diazazulene. $^{14)}$ These two results indicate the Michael-type conjugate addition to be exclusive in the nucleophilic reaction of $\bf 9$. Studies on the related aspect will be a matter of independent paper in future. $^{15)}$

The followings are NMR spectral data of new compounds.

- **3**: δ (H)=5.24(2H, s), 6.6-7.0(3H, m), 7.1-7.2(2H, m), 7.60(2H, d, J=9 Hz), and 8.19(2H, d, J=9 Hz). δ (C)=69.7, 115.5, 124.1(2C), 127.8(2C), 129.3, 132.5, 136.8, 138.0, 141.3, 148.0, 164.1, and 180.8.
- **4**: δ (H)=4.21(2H, s), 6.99(1H, ddd, J=9.5, 6, 5 Hz), 7.2-7.6(3H, m), 7.38(2H, d, J=9 Hz), and 8.08(2H, d, J=9 Hz). δ (C)=40.9, 120.5, 123.9(2C), 127.7, 130.0 (2C), 136.9, 139.5, 140.1, 147.0, 147.3, 167.9, and 173.6.
- **5**: δ (H)=3.40(1H, br s, OH), 5.86(1H, s), 6.9-7.2(4H, m), 7.46(1H, d, J=5.5 Hz), 7.58(2H, d, J=9 Hz), and 8.12(2H, d, J=9 Hz). δ (C)=75.2, 123.7(2C), 127.5 (2C), 134.4, 135.4, 135.9, 137.0, 142.2, 147.5, 149.5, 153.3, and 187.5.
- **6**: δ (H)=4.03(2H, s), 6.9-7.3(5H, m), 7.40(2H, d, J=9 Hz), and 8.09(2H, d, J=9 Hz). δ (C)=40.9, 123.6(2C), 129.9(2C), 133.4, 133.6, 135.7(2C), 136.1, 141.0, 147.0, 152.7, and 186.1.
- **9**: δ (H)=7.0-7.5(5H, m), 7.91(2H, d, J=9 Hz), and 8.23(2H, d, J=9 Hz). δ (C)=124.1 (2C), 130.0(2C), 134.2, 136.8, 137.0, 137.5, 141.0, 143.9, 150.1, 150.5, 186.2, and 195.1.
- **11**: δ (H)=5.55(2H, s), 6.7-7.1(3H, m), 7.4-7.8(2H, m), and 8.0-8.2(2H, m). δ (C) =67.7, 114.9, 125.2, 128.5, 128.8(2C), 132.7, 134.8, 136.8(2C), 137.9, 146.7, 164.2, and 180.8.
- **12**: δ (H)=6.36(1H, s) and 6.9–8.0(9H, m). δ (C)=70.4, 124.8, 128.8, 129.2, 133.5, 134.2, 134.5, 134.9, 136.7, 141.7, 148.9, 153.0(2C), and 187.4.

- **13**: δ (H)=6.9-7.3(4H, m), 7.4-7.8(3H, m), and 8.0-8.2(2H, m). δ (C)=123.9, 124.8, 129.0, 130.3, 133.4, 134.1, 135.6, 137.8, 138.5, 140.1, 144.3, 146.5, 185.6, and 193.7.
- **14**: δ(H)=3.31(1H, dd, J=5.5, 1 Hz), 6.1-6.3(2H, m), 6.6-7.1(5H, m), 7.66(2H, d, J=9 Hz), and 8.26(2H, d, J=9 Hz). δ(C)=52.2, 105.3, 114.5, 117.0, 119.2, 122.2, 123.2, 123.7(2C), 125.4, 126.4, 129.0(3C), 131.7, 132.8, 145.1, 147.1, 148.7, and 193.5.

References

- 1) H. Takeshita, H. Mametsuka, A. Chisaka, and N. Matsuo, Chem. Lett., 1981, 73.
- 2) H. Takeshita and H. Mametsuka, Heterocycles, 22, 663 (1984).
- 3) H. Takeshita, H. Mametsuka, and H. Motomura, in preparation.
- 4) When the sodium tropolonate was employed, the reaction mixture darkened and the isolable products were **3** and **4** in only 7% and 1.6% yields, respectively.
- 5) All new compounds described in this text gave satisfactory elemental analyses.
- 6) H. Takeshita, N. Matsuo, and H. Mametsuka, Bull. Chem. Soc. Jpn., <u>57</u>, 2321 (1984).
- 7) Calculations of the $\Delta \delta$ (5-6), the chemical shift differences for the carbons of the seven-membered rings between **5** and **6**, gave: 1.4(C-1), 0.6(C-2), 1.3(C-3), 1.8(C-4), 1.0(C-5), 1.0(C-6), and 0.2(C-7).
- 8) We thank Mr. Norihide Matsuo, M. Eng., for this experiment.
- 9) In this case, expected 3-(o-nitrobenzyl)tropolone ($\bf C$) was not detected in the mixture, but subsequent thermolysis of $\bf 11$ at 200 $^{\rm O}{\rm C}$ slowly produced a thermolysate whose $^{\rm 1}{\rm H}$ NMR [δ =4.46(2H, s), 7.2-7.6(7H, m), and 7.94(1H, dd, J=9, 2 Hz)] strongly suggested a formation of $\bf C$. However, due to instability under the conditions, its purification was unsuccessful.
- 10) T. Nozoe, T. Mukai, and J. Minegishi, Proc. Jpn. Acad., <u>27</u>, 419 (1951); W. von E. Doering and C. F. Haskey, J. Am. Chem. Soc., 74, 5688 (1952).
- 11) T. Nozoe, T. Mukai, J. Minegishi, and T. Fujisawa, Sci. Repts. Tohoku Univ., Ser. I, 37, 388 (1953); T. Mukai, Bull. Chem. Soc. Jpn., 31, 852 (1958).
- 12) Benzenoid analogs, salicylaldehyde or other phenolic compounds carrying electron-attractive substituents, seem to be worth trying, but at least to date every attempt was unsuccessful.
- 13) Synthesis of a compound in this family, 11-hydroxy-6-methylcyclohepta[b](1,5)-benzodiazepine (or tautomeric 12(H)-6-methylcyclohepta[b](1,5)benzodiazepin-l1-one), i, has been reported. See K. Imafuku, A. Yamane, and H. Matsumura, J. Heterocyclic Chem., 18, 335 (1981).
- 14) 6-Isopropyl derivative is known. See S. Matsumoto, Sci. Repts. Tohoku Univ., Ser. I, 42, 222 (1958). In a sense, cyclohepta[c]pyrazolones should be included in this category, but these derivatives are all known to exist in the tautomeric tropone form; e.g., S. Itô, K. Takase, N. Kawabe, and H. Sugiyama, Bull. Chem. Soc. Jpn., 39, 256 (1966); T. Nozoe, T. Asao, E. Takahashi, and K. Takahashi, ibid., 39, 1310 (1966); L. J. Luskus and K. N. Houk, Tetrahedron Lett., 1972, 1925.
- 15) We thank the Ministry of Education, Science, and Culture for a financial assistance, the Grant-in-Aid for Scientific Research to A. M. (No. 60470025).

(Received January 28, 1986)